Les réacteurs à sels fondus utilisent une technologie totalement différente des centrales nucléaires actuelles, pour être sûrs, fiables, propres et moins chers, ce qui permet de proposer une alternative à la combustion des carburants fossiles.

Comme pour toutes les technologies nucléaires ces réacteurs sont sans émissions. La production efficace de chaleur et d’électricité fait des réacteurs à sels fondus un outil puissant et polyvalent pour stimuler la croissance économique et parvenir à une décarbonation profonde.

Dans ce type de réacteur le combustible est un liquide, un mélange de sels fondus (typiquement des fluorures ou des chlorures), plutôt que le combustible solide utilisé exclusivement dans les réacteurs conventionnels. Les sels fondus sont thermiquement et chimiquement stables et sont d’excellents fluides de transfert de chaleur, idéaux pour capturer et dissiper la chaleur du processus de fission.

Combustible solide - liquide
Pastilles de combustible nucléaire traditionnel, et combustible liquide à sels fondus.

Dans ce mélange de sels fondus, on dissout une matière fissile :

…de sorte que le combustible et le liquide de refroidissement sont un et le même.

Ce type de combustible a de multiples avantages sur le plan de la sûreté, permettant d’éliminer ou de réduire certains dangers de la technologie actuelle, comme la pression, le terme source volatil, le contrôle actif de la réactivité, le refroidissement actif, la réactivité chimique, la prolifération, la réserve de réactivité, ou les transformations de liquides en gaz. Par exemple, une fusion du cœur est impossible dans un réacteur à sels fondus – le combustible est déjà un liquide.

Avec ces avantages de sûreté intrinsèques aux combustibles liquides, il est possible de proposer des concepts de réacteurs avec une réduction importante de coût par rapport à la technologie actuelle des réacteurs à eau pressurisée.

Sur le plan des déchets, utiliser un combustible liquide permet d’améliorer le taux d’utilisation du combustible, donc d’utiliser moins de combustible et produire moins de déchets. L’état liquide facilite le retraitement et permet pour certains concepts de séparer les actinides mineurs des produits de fission et de fermer le cycle nucléaire en sortant du système uniquement les « vrais » déchets du nucléaire, les produits de fission.

Les réacteurs actuels ont une seule utilisation – produire de l’électricité – parce que leur température de fonctionnement est limitée à un peu plus de 300°C. Un réacteur à sels fondus fonctionne à une température beaucoup plus élevée – environ 650 ~ 700°C, ce qui permet d’envisager de nouveaux marchés comme la chaleur industrielle, la production de carburants de synthèse, ou le dessalement de l’eau de mer. Avec une excellente capacité de suivi de charge, les réacteurs à sels fondus sont le partenaire idéal pour accompagner les énergies renouvelables intermittentes.

MSRE
Le réacteur expérimental à sels fondus a fonctionné avec succès entre 1965 et 1969 au laboratoire national d’Oak Ridge (États-Unis)

Testés avec succès dans les années 1960 aux Etats-Unis, les réacteurs à sels fondus sont aujourd’hui un des six concepts retenus dans le cadre du Forum International Génération IV. Malgré le multitude de différents concepts possibles dans la grande famille des réacteurs avec combustible liquide, c’est le concept français de réacteur nucléaire rapide à sels fondus (Molten Salt Fast Reactor, MSFR) qui a été retenu en tant que concept central pour la recherche sur cette 4ème génération.

A côté de ces avantages, les réacteurs à sels fondus sont confrontés à un certain nombre de challenges. La technologie n’a jamais été disponible dans le commerce. L’approbation réglementaire sera un processus long et coûteux. L’expérimentation sera nécessaire pour certains nouveaux concepts et applications de matériaux. Et l’obtention de financement est difficile en raison de l’engagement à long terme requis et du risque élevé de mettre en œuvre une technologie de rupture dans un environnement hautement réglementé.

Page précédente – le problème

Page suivante – historique